Efficient Single-View 3D Co-segmentation Using Shape Similarity and Spatial Part Relations
نویسندگان
چکیده
The practical use of the latest methods for supervised 3D shape co-segmentation is limited by the requirement of diverse training data and a watertight mesh representation. Driven by practical considerations, we assume only one reference shape to be available and the query shape to be provided as a partially visible point cloud. We propose a novel co-segmentation approach that constructs a part-based object representation comprised of shape appearance models of individual parts and isometric spatial relations between the parts. The partial query shape is pre-segmented using planar cuts, and the segments accompanied by the learned representation induce a compact Conditional Random Field (CRF). CRF inference is performed efficiently by A∗-search with global optimality guarantees. A comparative evaluation with two baselines on partial views generated from the Labelled Princeton Segmentation Benchmark and point clouds recorded with an RGB-D sensor demonstrate superiority of the proposed approach both in accuracy and efficiency.
منابع مشابه
مدلسازی روابط توپولوژیک سه بعدی فازی در محیط GIS
Nowadays, geospatial information systems (GIS) are widely used to solve different spatial problems based on various types of fundamental data: spatial, temporal, attribute and topological relations. Topological relations are the most important part of GIS which distinguish it from the other kinds of information technologies. One of the important mechanisms for representing topological relations...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملTarget detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV
In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...
متن کاملShape segmentation by hierarchical splat clustering
This paper presents a novel hierarchical shape segmentation method based on splats for 3D shapes. The major contribution is to propose a new similarity metric based on splats, which combines patch-aware similarity and part-aware similarity adaptively. An optimized L metric for VSA (variational shape approximation) method is used to get splats first, and such adaptive similarity metric is used t...
متن کامل